Calculation of miniband structure in strain-balanced type-II GaAsBi/GaAsN superlattice

Jinyoung Hwang and Jamie Phillips^{*}

Solid State Electronics Laboratory Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI, United States *jphilli@umich.edu

University of Michigan Electrical Engineering and Computer Science

Outline

这位

Motivations for GaAsBi/GaAsN Type-II SLS

Study Objectives

Calculation Methodology

- Strain-Balanced Criteria
- Band alignment and Strain effect
- Schrödinger Poisson Self-Consistent Equation
- **Results**
- **Future work**
- **Conclusion**

Motivations for GaAsBi/GaAsN

Desire narrow bandgap material with effective lattice match to GaAs

- Key for low-cost GaAs technology
- Particularly important for optoelectronic devices such as detectors where thick active regions required
- Lasers

团

- Photodetectors
- Solar Cells

Motivations for Type-II SLS

Advantages of superlattices – Bandstructure engineering

Effective bandgap

区

- Electronic transport
- Controlled by layer thickness

Advantages of GaAsBi/GaAsN Type-II superlattice

- Effective lattice match to GaAs
- Minibands in conduction/valence band can be independently controlled
- Radiative transitions (lifetime, absorption) can be controlled

Study Objectives

Develop method for calculating electronic structure

Determine range of transition energies for SLS

- Strain balanced structures
- "Reasonable" Bi and N content (up to 5% Bi and N composition)
- Varying thickness for GaAsBi, GaAsN layers

Initial objective to determine criteria to achieve "1 eV" material for photovoltaics

LXC.

Simulation Methodology

Strain-balanced Criteria

 Determine precondition of concentrations of Bi and N using the strain-balanced criteria on a GaAs substrate

2 Band alignment of GaAsBi/GaAsN superlattice

- Obtain band edge discontinuity of the heterostructure based on GaAsBi and GaAsN band alignment
- Consider strain effect due to lattice mismatch

3 Miniband calculation using Schrödinger – Poisson equation

- Simulate energy states in the superlattice using self consistent Schrödinger Poisson equation
- Transfer matrix algorithm used to solve Schrödinger equation

这位

Strain-Balanced SLS

Strain - balanced criteria on GaAs substrate

- Balancing compressive strain (GaAsBi) and tensile strain (GaAsN)
- Condition of zero average in-plane stress^[1]

$$\frac{\partial U_{av}}{\partial \epsilon_1} = \frac{2}{t_1 + t_2} \left(t_1 A_1 \epsilon_1 + t_2 A_2 \epsilon_2 \frac{a_1}{a_2} \right) = 0$$

Results: GaAs_{1-x}Bi_x / GaAs_{1-y}N_y

Bi (x)	N (y)
0.01	0.006
0.02	0.011
0.03	0.017
0.04	0.022
0.05	0.028

[1] N. J. Ekins-Daukes, K. Kawaguchi, and J. Zhang, Crystal Growth & Design 2, 287 (2002)

这位

University of Michigan Electrical Engineering and Computer Science

Strain-Balanced SLS

Critical thickness of GaAsBi and GaAsN on GaAs substrate

Band alignment – Bi, N alloys

[2] K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y. –J. Cho, and J. Furdyna, Phys. Rev. B. 75, 45203 (2007)
[3] W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, H. P. Xin, and C. W. Tu, Phys. Stat. Sol 223, 75 (2001)

这团

University of Michigan Electrical Engineering and Computer Science

GaAsBi

July 16th, 2010

GaAsN

Band alignment- Bi, N Alloys

General Band alignment of GaAs_{1-x}Bi_x (x=0~0.05) , GaAs_{1-y}N_y (y=0~0.05), and GaAs

议

Band alignment - Strain effect

Strain effect on band alignment

赵

- GaAsBi: Compressive strain / GaAsN: Tensile strain
- Pseudomorphically grown on a (100)-oriented substrate

 $\mathbf{E}_{\mathsf{C}-\mathsf{HH}}(\mathbf{k}=\mathbf{0}) = \mathbf{E}_{\mathsf{g}} + a\big(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz}\big) - (b/2)(\epsilon_{xx} + \epsilon_{yy} - 2\epsilon_{zz})$

 $\mathbf{E}_{\mathsf{C}-\mathsf{LH}}(\mathbf{k}=\mathbf{0}) = \mathbf{E}_{\mathsf{g}} + a\big(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz}\big) + (b/2)(\epsilon_{xx} + \epsilon_{yy} - 2\epsilon_{zz}) \quad a = a_c - a_v$

Electronic Structure Calculation

Coupled Schrödinger – Poisson Equation^[4]

Solving Schrödinger equation

- Calculate subband structure in the superlattice
- Transfer matrix approach^[5] used

[4] C. H. Fischer IV, Ph.D. dissertation. University of Michigan (2004)

[5] E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, IEEE Journal of Quantum Electronics 29, 2731 (1993)

这位

University of Michigan Electrical Engineering and Computer Science

Miniband structure of SLS

这位

Miniband of GaAs_{0.96}Bi_{0.04} / GaAs_{0.979}N_{0.021}

Transition energy of SLS

Transition energy range for different Bi composition

Transition energy of SLS

Transition energy range for different Bi composition

Lattice Constant (Å)

这位

Results

这位

Thickness of individual layer vs. transition energy with different N and Bi composition (t_{1,GaAsBi} = t_{2,GaAsN})

L.

Future work

Carrier transport simulation

- Tunneling probability
- Carrier scattering probability via Monte-Carlo simulation
- Determine electron transport in vertical and lateral directions

Radiative transitions

- Wavefunction overlap
- Optical absorption/recombination lifetimes

Compare with experimental data

- Material parameters, band offsets, etc, used in simulation
- Experimental SLS structures

这位

Conlclusions

- Electronic structure of GaAsBi/GaAsN superlattices were calculated for varying layer thickness and alloy composition
- □ GaAsBi/GaAsN superlattices offer a wide range of effective bandgap energy (~0.7 – 1.4 eV) for strain-balanced structures on GaAs
- Attractive for variety of optoelectronic devices, and need further experimental and theoretical research efforts

Center for Solar & Thermal Energy Conversion (CSTEC)

This work is supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the Department of Energy Office of Basic Energy Sciences

1¥4